APPROXIMATE CALCULATION OF THERMOELASTIC
STRESSES UNDER NONSTATIONARY CONDITIONS

P. V. Tsoi UDC 539.377:536 .49

An analytical method of calculating thermal stresses for mixed boundary conditions of the
second and third kind is proposed. Problems are solved for arbitrary time-variations of
the temperature of the ambient medium.

An effective approximate method of calculating thermal stresses under nonstationary conditions is
proposed, which even in the first approximation is more accurate than the solutions obtained in [4]. The
determination of the temperature field is based on the use of integral transforms in combination with varia-
tional methods {5, 8].

Plane Wall. The tem:=rature distribution in an unbounded plate of thickness R for mixed boundary
conditions of the second and third kind

oT (0T
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ax x=0 ox x=R
in the Laplace transform domain, is sought among functions of the form
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The coefficients f (p), a% (), ..., a}(p) for which expression (2) satisfies best the heat-conduction equation

are determined by the Bubnov —Galerkin method [5, 8]. After calculating these coefficients and passing to
the domain of inverse transforms, we obtain the approximate temperature field.

In the first approximation, for arbitrary boundary conditions, the temperature can be written in the
form

T (&, Fo, Bi) = gy (Fo) + AR <g~ Bitl >+a1 (Fo) (52_ Bi+2 ) , 9
A Bi Bi
where
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®,(Fo) is the inverse transform of p¢3 ) — Ty; ¢ = x/R;
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D (Bi) = C (Bi)
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Fig. 1. Maximal thermoelastic stresses at the plate surface for Bi = 1 @),
4 ), = (c). Solid curves correspond to exact calculations, dashed curves
to data [4], points to formula (9).

Fig. 2. Changes in the relative temperature 6 (1, Fo) and stress ¢ at the
plate surface in the case of harmonic fluctuations of the ambient tempera-
ture (Pd = 2). Numbers at the curves denote the values of the Bi number.

The temperature calculated from formula (3) for ¢, {t) = —q = const, @,{t) = Te = T is in satisfactory
agreement with the exact solution for Fo = 0.1 [8].

Since the thermal stresses at the surface of an element situated in a fluid (heat~transfer agent) may
be normally considered as the greatest threat, we shall calculate the tangential stresses at the plate surface.

According to [3], the thermoelastic surface stresses for a plate can be determined from the formula

a.E

[T (Fo) — T, (5)

G ==

—Y

where
1
T (Fo) = § T (€, Fo) dt.

4]
For an exponential drop in the temperatures of the medium and the thermal insulation of the other wall
¢ () =0, @) =To— AT [l—exp(—mt)] =T, — AT [1—exp(— PdFo)] (6)
from solution (3}, we obtain
T &, Bi, Fo, Pd) =T, —AT [l —exp(— Pd Fo)|

. D(Bi) PAAT B P “Bik2
D B —pg [P PAFO) —exp [~ D @B)Fo) ( : g), )

The relative stress can be reduced {o the form
o(l—v)  D(B)Pd
ATEq, 31D (Bi)—Pd)

T =

{exp (— PdFo) — exp[— D (Bi) Fol}. 8)

By differentiating with respect to Fo and analyzing for maxima, we obtain

D
- _D@®i) (D) p*d 9
Ornax ™ 3 (p—d) ’ ( )
to which corresponds the dimensionless time
Fo, = [1nD(Bi) —1In Pd] [D (Bi) — Pd]“l_ (10)
Solutions in a form similar to (8)-(10) were obtained in [4], with the only difference that the quantity
. 3Bi
Bi) = ——
B =

was substituted for D(Bi).
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Fig. 3. Changes in the relative temperature 04, and stress Eq, at the inside
surface of the tube for a linear drop in the temperature of the medium over
a finite interval of time Fo; = 0.5. Solid lines correspond to o, dashed
lines to 6. The numbers at the curves are values of Bi.

Fig. 4. Value of ¢ at a noninsulated tube surface for Bi = 4, the tem-
perature drop of the medium according to an exponential law. Solid lines
correspond to calculations for the fluid flow inside the tube, dashed lines
to calculations for external heat transfer.

Figure 1 shows the stresses calculated from formula (9) for Bi = 1, 4, «, and Pd numbers ranging
from 0 to 20. The figure also shows the relations 0., = f(Bi, Pd) obtained from an exact solution and from
an approximate formula [4]. The comparison demonstrates the high accuracy of the method proposed.
Similar results are obtained when Fo, is determined from formula (10).

In heat-conduction theory it is known that the time-variation of the temperature field in a plate for
boundary conditions of the third kind is described under regular conditions by an exponential function with
the exponent ufFlo, where uy is the first (smallest) root of the equation

|
ctgp = —.
en Bi
In the approximate solution (7), the rate of stabilization is D(Bi). When the Bi number varies from
0 to 1, the difference between D (Bi) and uf does not exceed 0.08%. For 1 = Bi = 10, the value of D(Bi) is
greater than that of u? by not more than 1%, and for 10 = Bi = e, by not more than 1.3%. Consequently, one

may propose the following computational formula
5 (Bi% -+ 3Bi)
° =M= OBR L 10Bi+15

This expression provides an analytical relationship between the coefficient m, (rate of cooling) and the Bi
number for regular conditions [1].

In [4], the rate of cooling is expressed by ¢(Bi). For 1 = Bi = 10, the value of ¢(Bi) exceeds that of
uf by 13%. For Bi = =, the maximum error is 21%, i.e., with increasing Bi number, the function ¢ (Bi) de-
viates appreciably from the value of uf. At the same time, the maximum error of D(Bi) for Bi = « is merely
1.3%. Thus, replacing ¢(Bi) by the function D(Bi) would improve the accuracy of the formulas proposed in
[4] for calculating thermal stresses.

For harmonic temperature fluctuations of the ambient medium and the thermal insulation of the other
wall

@1 () =0, @,(t) = T, -+ AT sin ot = T, 4+ AT sin (Pd Fo) (12)
solution (3) reduces to the form

T (&, Fo, Bi, Pd) = T, - AT sin (Pd Fo)

. (Bl—;-%— — §2> AT—[—)(—I?;% {sin g, exp [— D (Bi) Fo] ~—sin (Pd Fo -+ )} , (13)
i



where
. m o wR? D(Biya
SINQy = ————=, C0SQy =~ —————, d=~*‘, m= ———-
1 (D2+ m2 5 (1)2+ mZ a RZ
The thermoelastic surface stress of a plate heated by the ambient medium by a harmonic law is de-
termined from the formula
o{(l—v)  D(Bi)cosq
Ea, AT 3

G = {sin qo exp [— D (Bi) Fo] — sin (PdFo + gy)}. (14)

By differentiating (14) with respect to the parameter Fo and equating to zero, we obtain

D (Bi)exp{-— D (Bi) Fo] = — .Pd cos (PdFo -+ ¢,). (15)
sin @,

By solving graphically the transcendental equation (15) for given values of Bi and Pd, we obtain the moment

of time Fo, to which corresponds the maximum stress. Figure 2 shows the changes in the relative tempera-

ture (1, Fo, Bi, Pd) = (T (1, Fo) — T()/AT andinthe stress ¢ calculated from formulas (13)and (14) for Pd = 2

and Bi = 2, 10, . The thermal stresses and the temperature changes over the entire thickness of the plate

can be analyzed on the basis of solution (13).

It is noteworthy that solutions of such problems for the boundary conditions (12) find practical appli-
cations in the study of thermal stresses in large concrete blocks (for example in dams) exposed to diurnal
variations of the air temperature [6].

Solid Cylinder. The radial and tangential stresses are determined from formulas [2]

_ Ea,

%:§§§W[N&O+?mﬂ~ﬂwdﬁ (17)

where

— 2 4
T 0= | T 00
9]

Intransforms, the temperature distribution in the first approximation for boundary conditions of the
third kind are defined by the formula

e (N e AB)[Bi42 (N ABi)a 1=
T (R,p> o* () + — [ = (RH[TO pe* (p)] [p+ o ] , (18)
where
L 6(BP® - 4Bj)
A - Bi? + 6Bi -+ 12 19)

By changing to the inverse transform domain, we obtain the temperature distribution in a cylinder for any
law of ambient temperature variation ¢(t). Specifically, for ¢(t) = T = const, the relative temperature is
described by the formula

T H—To . N Bi+2 [ry
e(R Fo, B) L 0=T 10254 (@i)exp| A(Bl)Fo][mBi (R”. (20)

< TO

Let us determine T(R, t), '—f(r, t), T(r, t) from formula (20), and substitute the values obtained into
(16), (17). Then,

- O'r(lh’V) —A(Bl) L .

o Ea,(T—Ty 16 [ ( R } exp [— A(Bi) Fo], 21)
¢ ) __A(Bl) r _
%" T Fa, (T.—Ty) [ ( ) ] exp [— A(Bi) Fo]. (22)
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TABLE 1. Values of p}

e R B
R 0,5 | 1 3 5 7 10
ﬁ_ according to [T] 1,7056 | 3,2761 8,4797 | 12,3693 — —
T
from (28) 1,7065 | 3,2800 | 8,4798 | 12,3694 | 15,3613 | 18,7200
w | according to [7] 0,7259 | 1,3710 | 3,1577 | 4,2477 4,9729 | 5,6836
N
= | from (28) 0,7380 1,3712 | 3,1616 | 4,2510 4,9750 | 5,6905

For 0.06 = Fo = 0.1, expressions (21), (22) yield results which deviate from the exact solution by not more
than 8-10%, while for Fo = 0.1 the results arealmostidentical with the exact solutions.

It is noteworthy that the function A (Bi) defined by formula (19) approximates satisfactorily the square
of the first (smallest) root of the equation

=~
—
=
=
"=

Stresses in the Tubes (Hollow Cylinders). For a thermally insulated outside surface, ¢,(t) = 0, and
a temperature of the medium inside the tube varying according to the law

o (f) = Ty— ATt + AT (t — 1) H (t —1) = T, — Pd* (Fo —Fo,) H (Fo—Fo,) (23)

the temperature distribution over the wall thickness can be reduced to the form
. T(r, Fo, Bi, Fo,) = T, — Pd*Fo + Pd* (Fo— Fo,) H (Fo —Fo,)
+ Pd* D (Bi, k) {[1—exp (— A(Bi, &) Fo)].

— H(Fo— Fo,) [1—exp (— A(Bi, &) (Fo— Fog)]) (% _gz) , (24)
where
D@, §) - BB+ F 12641
4[Bi(k +3) + 12] -
ABL ) 10Bi [Bi (k +3) + 12

Bi?(11% -+ 5) + 10Bi (5% +3) -+ 60 (£ +1) ©

In these expressions k = Rz/ R,; H(Fo — For) is the Heaviside function {HH(Fo — For) = 0 for Fo < For, H(Fo
—~Foq) = 1 for Fo = Foq); £ = (r —R,)/AR; Pd* = AT (AR)?/a; For = at/(AR)*; AR = R, —R,. The tempera-
ture drops linearly during a time 7, and then remains constant and equal to T+ ATT.

The tangential stress at the outside surface of the tube is
0y (R) (1—v) _ D(Bi, k) (5% +3)
Ea, Pd* 6(k+1)
X {[1 —exp(— AFO)] — H (Fo— Foy) [l—exp (~A (Fo — Fo,,))] } ) (26)

E(p (Ri) =

Figure 3 shows changes in the relative temperature ¢ = (T— T/ Pd* and the stresses ;¢ (R,) at the inside
surface of the tube for For = 0.5, Bi = 0.4, 2, 10, «, and k = 2.

Solution of the boundary-value problem for nonstationary heat conduction in a hollow cylinder for
mixed boundary conditions of the second and third kind with the aid of Grinberg —Koshlakov's integral trans-
forms leads to the solution of the Sturm —Liouville problem, the eigenvalues of which are determined from
the solution of the transcendental equation

Yolbn) __ Pa @27)

Vi(pn) Bi '
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where
Vo) = Y (0,0 Jo (0o — I, (0,0) Yo (1),

Vi (p’n) = Yi (Mnk) Ji (p'n) - Ji (Mnk) Yi (p’n)'

The method proposed in this paper for calculating nonstationary heat conduction implies that expression
A (Bi, k) must yield the functional dependence of the square of the first root of Eq. (27 on the Bi num-
ber and the parameter k. We refer the Bi number and Fo to the inside radius Bi = aR;/A, Fo = at/R?. The
expression A (Bi, k) reduces then to the form

10Bi (8 —1)7![Bi(k —1) (£ +3)+12] . (28)
Bi?(k —1)?(11k 4-5) + 10Bi (£ —1) (5% +3)+60 (k- 1)

A% (Bi, k) =

Values of u, calculated to the third decimal digit for Bi = 0.5, 1.3, 10, and k =1.25, 1.50 are given in [7].
Agsuming them to be exact, we compare our calculations from formula (28). The results of the calcula-
tions and of the comparison with the exact values are compiled in Table 1. The results are in satisfactory
agreement.

In order to determine the second root gy, one must obtain a solution in the second approximation. We
obtain then, at the same time, an improved formula for pt%. Our calculations showed that, in the second ap-
proximation, the value of {i; conforms with the exact value within an accuracy to the third decimal digit.

For a temperature drop of the medium according to the power law (6) and of the thermal insulation
of the outside surface, the tangential stress at the inside surface of the tube reduces to the form

op(1—¥) A (Bi, k) Pd(5k +3)

g =

= — PdFo) — — A(Bi, k) Foll. 29
G ENT ~ GLA(B, B)—Pd] (e 1) | X PdFo)—expl—A(Bi, ) Folj (29)
The maximum stress is obtained from formula
A(Bi,k)
- i (Bi ~ A8, ;) —Pa
O'm — Au (Bl, k) Pd (5]3 +3) A (Blv k)] —b ’ (30)
" 6(k+1) Pd

where
5Bi[Bi (3% +5) + 12(k 1)
2[Bi* (5% +11) 4 10Bi (3% 4-5) +60(k +1)] ’

A, (Bi, &) =

The time to Emax is determined from formula (10), provided A (Bi, k) is substituted for D(Bi).

Figure 4 shows the changes in Emax calculated from formula 30) for Bi = 4,k =1, 1.5, 2 with changes
in the Pd number from 0 to 20. From the solution of (26)~(30) for k — 1, we obtain the corresponding for-
mulas for a plate.

Finally, it should be noted that the stresses at the contact surface with the fluid for external flow
and thermal insulation of the inside wall of the tube can be studied with the aid of formulas (26)-(30), pro-
vided in these solutions 1/k is substituted for k. The dashed lines in Fig. 4 correspond to o, calculated
for external contact between the tube (k = 2) and the fluid and for a solid cylinder k = =, R, — 0, Ry < «).

Thus, the approximate method of calculating thermoelastic stresses, based on the use of integral
transforms and variational methods of determining the temperature field inside the body under considera-
tion, yields highly satisfactory results and at the same time appreciably reduces the computational labor.

NOTATION
o is the stress;
T is the temperature of the body;
T is the mean temperature;
™ is the representation of the temperature in Laplace transforms;
p is the Laplace transform parameter;
E is the modulus of elasticity;
v is the Poisson ratio;
ap is the linear expansion coefficient;

Bi = hR = a¢R/A, Fo = at/R?, Pd = mR?%/a or Pd = wR%/ ¢ is Predvoditelev's number;
Ht -1 is the unit Heaviside function;

For = dT/Rz;

T is the time of linear rise (drop) in the temperature of the medium.
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